Answer:
Option B
Explanation:
Torque when the wire is brought in a uniform field E
$\tau= qEL\sin\theta$
= $ qEL\theta$ [ $\because$ $\theta$ is very small]
Moment of intertia of rod AB about O
$I=m\left(\frac{L}{2}\right)^{2}+m\left(\frac{L}{2}\right)^{2}=\frac{mL^{2}}{2}$
$\tau= I\alpha$
$\therefore$ $\alpha=\frac{\tau}{I}=\frac{qEL\theta}{\frac{mL^{2}}{2}}$
$\Rightarrow $ $\omega^{2}\theta=\frac{2qEL\theta}{mL^{2}}[\because \theta=\omega^{2}\theta]$
$\Rightarrow \omega^{2}=\frac{2qE}{mL}$
Time period of the wire
$T=\frac{2\pi}{\omega}=2\pi\sqrt{\frac{mL}{2qE}}$
The rod will become parallel to the field
in time T/4
$\therefore$ $t=\frac{T}{4}=\frac{\pi}{2}\sqrt{\frac{mL}{2qE}}$